The BrightEyes-TTM: an open-source time-tagging module for fluorescence laser scanning microscopy


July 25, 2023
Light Microscopy Virtual Pub

Imaging technologies are becoming increasingly complex and ever more expensive, reducing the general accessibility and potential reach of cutting-edge techniques. The Special Edition Virtual Pub “Open Hardware in Imaging,” in collaboration with the Euro-BioImaging Industry Board, will highlight developments from scientists and companies who are committed to making biological & biomedical imaging hardware and software solutions openly available to a wide audience.

When: September 22, 2023, from 13:00-15:00 CEST

Where: Online

At this event, Mattia Donato, Istituto Italiano di Tecnologia, Molecular Microscopy and Spectroscopy, will present The BrightEyes-TTM: an open-source time-tagging module for fluorescence laser scanning microscopy - (full abstract below). Hear this talk and others like it on September 22!

Full program
Register

ABSTRACT

The BrightEyes-TTM: an open-source time-tagging module for fluorescence laser scanning microscopy

Mattia Donato
Istituto Italiano di Tecnologia, Molecular Microscopy and Spectroscopy

Single-photon avalanche diode array detectors (SPAD) array detectors have changing fluorescence laser-scanning microscopy (LSM) by giving a new set of information about the location opening to a new photon-resolved data acquisition approach. Fluorescent photons are recorded one-by-one with a series of spatial and temporal signatures precluded to typical single-element detectors.

The rapid progress of detectors SPAD array detectors and the ever-evolving demands of research goals have motivated us to develop an open-source, low-cost, versatile, multi-channels time-tagging module (TTM) based on a FPGA (Field-Programmable Gate Array). The TTM is capable of simultaneously tagging multiple single-photon events with a precision of 30 ps, as well as multiple synchronization events with a precision of 4 ns.

The TTM is a slave device that can be easily connected to LSM microscope equipped with SPAD array detector, enabling to perform live-cell super-resolved fluorescence lifetime image scanning microscopy and fluorescence lifetime fluctuation spectroscopy.

Implemented on a commercial Xilinx Kintex-7 FPGA evaluation board, the TTM is an FPGA project developed using VHDL/Verilog. With its user-friendly approach, the pre-compiled firmware can be effortlessly uploaded by users onto the FPGA. The TTM seamlessly streams data through the USB 3.0 port. At the same time as the source code is available, experts can modify it and adapt it to the own needs. Furthermore, the TTM offers a framework of software for data acquisition and a set of Python library for data analysis.

The BrightEyes-TTM is part of the open-source suite, which was born as an offshoot of the BrightEyes project founded by the ERC in 2018. This suite also includes the Microscope Control System (MCS), a Python/NIFPGA-based microscope control system, and a comprehensive Python library for advanced data analysis in Image Scanning Microscopy (ISM).

We are confident that the introduction of the BrightEyes-TTM can support the microscopy community in promoting the adoption of SP-LSM in life science laboratories.


More news from Euro-BioImaging

July 12, 2024

Latest developments in cryo-EM and a goodbye to iNEXT-Discovery

The final consortium meeting of the iNEXT-Discovery project took place in Brno in June 2024, alongside the Symposium on Recent Advances in Cryo-EM. This…

July 10, 2024

Contribute to the "Inner Cosmos" art project

Inner Cosmos is an art project by Euro-BioImaging aimed at reaching the general public. The video has been designed as part of an installation…

Overview of the Node-to-Node exchanges from the 12 selected applications to the first round of the Job Shadowing program

July 10, 2024

Participants selected for the first Euro-BioImaging Cross-Node Job Shadowing program!

Open to all Euro-BioImaging Node Staff, the Cross-Node Job Shadowing program is a unique and exciting initiative implemented through…